New Report: FC Cincinnati’s West End Stadium using technology to support safer, easier fan experience

Stadium Tech Report is pleased to announce our Spring 2021 issue, with a profile of the technology being deployed at FC Cincinnati’s new West End Stadium. With an eye toward making the fan experience better and safer, the Atomic Data-led deployment of Wi-Fi, entry and concessions technologies provides a robust technology infrastructure. Read our lead profile for all the details!

Our latest issue also has some forward-thinking analysis, including Bill Anderson’s essay on why Frequency Neutral Networks are the “magic” that will provide the kind of wireless connectivity users are seeking. Paul Kapustka weighs in on why concessions are going all-digital and cashless, and why that’s a good thing for everyone involved.

We are also featuring our second interview in our “Design Vision” series, this time with Kevin Devore of ME Engineers. We also have a recap of the wireless usage from Super Bowl LV in Tampa, where the reduced-size crowd still consumed data at a rate equal to past “big games.”

If you are reading on a desktop or tablet, you can view all the stories in our web magazine format.

We’d like to take a quick moment to thank our sponsors, which for this issue include Corning, Boingo, MatSing, Cox Business/Hospitality Network, American Tower, CommScope, AmpThink, ExteNet Systems and Belden. Their generous sponsorship makes it possible for us to offer this content free of charge to our readers. We’d also like to welcome readers from the Inside Towers community, who may have found their way here via our ongoing partnership with the excellent publication Inside Towers.

Texas A&M’s mobile browser end-around: How the Aggies and AmpThink changed the game-day fan engagement process

A look at the 12thmanlive.com site at a Texas A&M home game this past season. Credit: Texas A&M (click on any photo for a larger image)

In the short history of in-stadium mobile fan engagement, a team or stadium app has been the go-to strategy for many venue owners and operators. But what if that strategy is wrong?

You can always count on team and stadium apps to be introduced with a long list of bells and whistles, from in-seat food ordering and delivery to digital ticketing, instant replay options and venue wayfinding services. Yet after those apps are bought and released, very few teams or stadium-app vendors are willing to provide statistics on how those features are — or are not — being used. As such, the business benefits of almost every stadium app ever launched remain a mystery.

In fact, the only statistic that emerges with any regularity in regards to stadium apps in their still-young lifetime is that their game-day usage usually trails general-purpose mobile-phone applications by a large margin, far behind social media applications like Facebook, Snapchat, Twitter and Instagram, as well as email and text messaging. So why is the conventional wisdom of having a game-day app still so conventional?

To seek an answer to that question and in part to “question every underlying assumption” involving fan digital engagement, Texas A&M University partnered with AmpThink this fall on a wide-ranging experiment centered around using mobile web, as well as a captive Wi-Fi portal, to see if it was possible to find a better way to digitally engage fans, for far less than the cost of a custom app. And so far, it looks like they did.

Via its “12thmanlive.com” digital game-day program website and a gated entry to access the Wi-Fi network at Kyle Field, Texas A&M was able to gather more than 150,000 fan emails this football season as well as another 60,000-plus additional opt-ins for phone numbers, addresses and permissions for more messages from the school. In addition to the marketing lead generation, a “Black Friday” ticket sale promotion, sent to fans who had opted in for more emails, produced 2,285 tickets sold for a late-season game against LSU, an additional $137,100 revenue that Texas A&M might not have otherwise realized.

And unlike app-based programs, the simple WordPress headless CMS behind 12thmanlive.com allowed for fast updates for content and graphics, letting AmpThink and Texas A&M customize the site’s look repeatedly, to test — and measure — the success or failure of different offers and promotions during the seven-game 2018 home season. The 12thmanlive.com program is already slated for more experiments during the basketball season, with an eye to covering as many of the school’s sports as possible.

‘Don’t treat it like plumbing’

Editor’s note: This profile is from our latest STADIUM TECH REPORT, an in-depth look at successful deployments of stadium technology. Included with this report is a profile of the Wi-Fi network at Mercedes-Benz Stadium in Atlanta, as well as the renovated State Farm Arena, also in Atlanta! DOWNLOAD YOUR FREE COPY now!

It’s worthwhile to note here that such a forward-thinking experiment is not a huge surprise for the partnership of Texas A&M and AmpThink. While AmpThink may be best known for its expertise in large-venue Wi-Fi design (including at Texas A&M’s Kyle Field), the firm over the past few years has expanded into many other segments of the overall stadium connectivity market, including taking on full-stadium technology integration, optical fiber network design and deployment, enclosure design and manufacture, as well as digital-signage programming and related marketing activities. And Texas A&M was one of the first big stadiums to go all-in on fiber backbone connectivity for its Wi-Fi and DAS networks, which are still at the top level of performance three years after their debuts.

Initially, Texas A&M followed one of the emerging paths of market strategies when it came to engaging fans via its wireless networks: It didn’t require fans to give any identifying information (like email, or name and address) to connect. Some venues, like the Atlanta Falcons’ Mercedes-Benz Stadium, consider it a point of pride to make network connections as easy as possible, with no kind of login information needed. In Atlanta, a sponsorship from AT&T for the Wi-Fi service makes it easier for the Falcons to offer it with no strings attached.

The team at Texas A&M concluded that teams should put a higher value on connectivity, since there aren’t any measurable business metrics to be found that prove that fans are happier or more engaged simply because they have “frictionless” access to Wi-Fi. And by allowing fans to use Wi-Fi anonymously, teams give away opportunities to generate a return on their technology investment.

“Some people say the network’s just plumbing, but they don’t say why,” AmpThink president Bill Anderson said in a recent interview. “Two or three years ago, having Wi-Fi with no hurdles and getting big usage numbers gave you something to brag about. But now, we’re seeing more teams ask, ‘are we getting any return on investment for our technology?’ ”

The first step in exploring that direction was taken by the school for the 2018 football season, when Texas A&M introduced a portal for Wi-Fi login which required a name and a valid email address to connect. Acknowledging that it might lower overall Wi-Fi usage, the portal did serve Texas A&M’s goal of increasing its ability to identify attendees by only allowing access to those who were willing to share some information.

For Texas A&M, using a Wi-Fi portal was an opportunistic business decision. With robust Wi-Fi and cellular networks at Kyle Field, fans who didn’t want to share their information for Wi-Fi had the choice of using the cellular DAS, which has superb coverage from multiple carriers, including Verizon, AT&T and T-Mobile.

Mobile web instead of an app

For the 2018 football season, Texas A&M added another twist in a new direction: The debut of a new digital game-day program, called 12thmanlive.com, which uses HTML5 to create an app-looking web page with a simple menu of activity buttons located beneath a live scoreboard feed.

According to Pat Coyle, Texas A&M’s new senior associate athletic director and chief revenue officer, the mobile-web game day program was another important cog in the school’s broader data collection and monetization strategy, which he paints as a “digital flywheel” where Texas A&M can use a multitude of data points to “adjust and improve service to our key customers.” But key to that strategy was getting live attendees to engage with the network in greater numbers than previously seen. Enter, 12thmanlive.com.

What made 12thmanlive.com interesting from one perspective was not what it had, but what it didn’t have. With no app to download, the site was quickly available to anyone attending a game simply by entering the URL into a mobile-device browser. Its simple design (no photos or videos, for example) made it fast to load and easy to understand.

On the plus side, what the site did offer was activity much different from most team or stadium apps, which generally focus on content or on interactive services, like ticketing or loyalty programs. Among the 10 buttons on the site’s main interface were features including game-day rosters, a stats tracker and a way to send chat messages to stadium personnel; the site also included a number of sponsored promotions, including a giveaway contest for a helmet signed by new head coach Jimbo Fisher, future ticket giveaways, coupons for food and beverages, and a link to join the Wi-Fi network for fans who might have been on a cellular connection to begin with.

While team apps might have been looked at to fill game-day interactions, Coyle said that previous game-day statistics from Kyle Field’s Wi-Fi network showed fewer than 1 percent of fans would use the school’s old, downloadable app while attending a game.

With a web platform, the idea was that Texas A&M would have the ability to quickly add or change more game-day centric features and to integrate them with third-party services. But in the face of historic non-participation via the app, could Texas A&M and AmpThink get fans to click on a mobile website instead? And would it be worth the cost of trying?

A much cheaper experiment than an app

One obvious factor in the idea’s favor from the beginning was the low cost of development for a web-based project, especially when compared to that of a custom app. AmpThink estimates that most custom apps cost teams somewhere in the range of $1 million. Total costs for the 12thmanlive.com project were “in the mid-five figures,” according to the school, including not just the site and tools design but some “shoulder to shoulder” help from AmpThink during the season, according to Anderson.

A Kyle Field ribbon board advertises the stadium’s Wi-Fi network. Credit: Texas A&M

Launched at the start of the 2018 football season, the site was promoted in several ways, including messages on the big video board at Kyle Field as well as on smaller TV screens and ribbon boards throughout the stadium. The big screens also promoted individual contests, allowing fans to text a code word to a short numerical code, an action that would take them directly to the 12thmanlive.com site.

The Wi-Fi portal also helped, as a “welcome” email sent after a valid login to the network contained a prominent link to the 12thmanlive.com site.

Starting with the first game, the 12thmanlive.com site showed consistent user numbers, with an average visit total of approximately 8,500 fans per game over the 7-game season — close to 10 percent participation of all attendees, a 10x improvement over historic app interaction.

According to the school, Texas A&M started the season with the assumption that they did not know exactly what fans wanted. The 12thmanlive.com site featured some interesting content, like a stadium clock that was close to real time and game-day rosters. But analysis of site visits found that this game-related content had about zero dwell time and high abandonment rates. For contests and giveaways, however, there was very high engagement.

According to statistics provided by Coyle, a repeated contest to win a signed helmet was the most popular with 31,379 registrations over the seven games. That was followed in popularity by a milkshake coupon (14,261 registrations) and a free ticket contest (9,233 registrations).

Measurable and repeatable results

With the site only turned on during game days — and only promoted inside the stadium — the 12thmanlive.com efforts did not affect traffic to the team’s regular website, Coyle said.

Overall, the Wi-Fi portal and the 12thmanlive.com site garnered 156,543 total emails for Texas A&M, with 61,607 of those emails being new to the school’s database, according to figures from Coyle. Of that number, 44,894 came from the Wi-Fi portal, and another 16,713 unique emails came from registrations on 12thmanlive.com activities.

“While it’s natural to focus on 61,607 new records, the 156,543 number is also important,” said Coyle. “These are all fans who were anonymous but are now identified as ‘in attendance’ at particular games. Now we know more of the identities of folks who bought and attended games. So we can figure out which games the season ticket holders sold on secondary, for example.”

Coyle noted that Texas A&M’s overall strategy goes far beyond just the mobile web site, with power from the Wi-Fi network analytics also helping to spin the “flywheel.” For example, the school tested proximity marketing to educate fans about a new food stand on the 600 level of the stadium by using Wi-Fi location information to detect devices on that level, sending them an email promoting the food stand if they were registered in the system.

“We essentially used the Wi-Fi APs like beacons, and the difference is we didn’t need Bluetooth or a downloaded app to do this,” Coyle said.

When users who had previously logged in to the Wi-Fi network at a earlier game arrived for a new one, Coyle said the school was able to automatically trigger an email welcoming those users back; other network data collected included arrival and departure times, and DNS information to see what other apps fans are using, Coyle said.

“All of these data are more valuable when we can connect them to real people,” Coyle said. “When we know who these people are, we can use the data to adjust and improve service to our key customers. This will enhance loyalty, and eventually, profits.”

For Anderson, some additional proof in the pudding was the opt-in information fans were willing to share in the contests, giveaways and food coupon offers. On top of the email addresses another 60,055 fans gave permission to the school to send them follow-up marketing messages, a key indicator that people are willing to engage if they perceive value.

“Compared with other venues we work in, we saw better than expected opt-in rates,” AmpThink’s Anderson said. “I think it’s because Texas A&M gave fans a better value proposition.”

With actionable data already in hand, Texas A&M is iterating the 12thmanlive.com program for basketball season, with an eye toward next year’s football season and all the new ideas they can try. The WordPress content management system strategy allows teams and the schools to do a lot of the work themselves, since experience with WordPress is fairly widespread. In fact, Anderson said teams don’t even need to pick up the phone to call AmpThink, since what Texas A&M and AmpThink did is easily replicable from a DIY perspective.

“Anybody can just go out and get a good web person and build their own successes [with this model],” Anderson said.

New Report: New Wi-Fi, app and digital displays for San Jose Sharks’ SAP Center

MOBILE SPORTS REPORT is pleased to announce the Spring 2017 issue of our STADIUM TECH REPORT series, the ONLY in-depth publication created specifically for the stadium technology professional and the stadium technology marketplace.

Our profiles for this issue include a first-look visit to the San Jose Sharks’ newly wired SAP Center, where a Cisco Wi-Fi and StadiumVision network (deployed by AmpThink) has brought high-definition connectivity to the old familiar “Shark Tank.” We also have a profile of new DAS and Wi-Fi deployments at the Utah Jazz’s Vivint Smart Home Arena, as well as a recap of the wireless record-setting day at Super Bowl LI at Houston’s NRG Stadium. Plus, our first “Industry Voices” contribution, a great look at the history and progression of Wi-Fi stadium networks from AmpThink’s Bill Anderson. DOWNLOAD YOUR COPY today!

We’d also like to invite you to join in our first-ever “live interview” webinar, which will take place next Tuesday at 11 a.m. Pacific Time, 2 p.m. Eastern time. All the details are here, so register now and listen in next week for more in-depth views from Vivint Smart Home Arena, and their technology partners, Boingo and SOLiD.

We’d like to take a quick moment to thank our sponsors, which for this Stadium Tech Report issue include Mobilitie, Crown Castle, SOLiD, CommScope, Corning, Huber+Suhner, American Tower, and Aruba, a Hewlett Packard Enterprise company. Their generous sponsorship makes it possible for us to offer this content free of charge to our readers. We’d also like to welcome new readers from the Inside Towers community, who may have found their way here via our new partnership with the excellent publication Inside Towers. We’d also like to thank our growing list of repeat readers for your continued interest and support.

From overhead to under seat: A short history of the hows and whys of stadium Wi-Fi network design

Wi-Fi handrail enclosures at U.S. Bank Stadium, Minneapolis, Minn. Credit: Paul Kapustka, MSR

Wi-Fi handrail enclosures at U.S. Bank Stadium, Minneapolis, Minn. Credit: Paul Kapustka, MSR

By Bill Anderson, AmpThink

The history of high density (HD) Wi-Fi deployments in stadiums and arenas is short. Yet the the amount of change that occurred is significant; both in terms of how these networks are deployed and why.

Venue operators, manufacturers, and integrators are still grappling with the particulars of HD Wi-Fi in large open environments, even though there are a substantial number of deployed high quality implementations. Below, I’ve shared our perspective on the evolution of HD Wi-Fi design in stadiums and arenas and put forth questions that venue operators should be asking to find a solution that fits their needs and their budget.

AmpThink’s background in this field

Over the past 5 years, our team has been involved in the deployment of more than 50 high-density Wi-Fi networks in stadiums throughout North America. In that same period, the best-practices for stadium HD Wi-Fi design have changed several times, resulting in multiple deployment methodologies.

Each major shift in deployment strategy was intended to increase total system capacity [1]. The largest gains have come from better antenna technology or deployment techinques that better isolated access point output resulting in gains in channel re-use.

What follows is a summary of what we’ve learned from the deployments we participated in and their significance for the future. Hopefully, this information will be useful to others as they embark on their journeys to purchase, deploy, or enhance their own HD Wi-Fi networks.

In the beginning: All about overhead

Editor’s note: This post is part of Mobile Sports Report’s new Voices of the Industry feature, in which industry representatives submit articles, commentary or other information to share with the greater stadium technology marketplace. These are NOT paid advertisements, or infomercials. See our explanation of the feature to understand how it works.


Designers of first generation of HD Wi-Fi networks were starting to develop the basic concepts that would come to define HD deployments in large, open environments. Their work was informed by prior deployments in auditoriums and convention centers and focused on using directional antennas. The stated goal of this approach was to reduce co-channel interference [2] by reducing the effective footprint of an individual access point’s [3] RF output.

However the greatest gains came from improving the quality of the link between clients and the access point. Better antennas allowed client devices to communicate at faster speeds which decreased the amount of time required to complete their communication, making room for more clients on each channel before a given channel became saturated or unstable.

Under seat Wi-Fi AP at Bank of America Stadium. Credit: Carolina Panthers

Under seat Wi-Fi AP at Bank of America Stadium. Credit: Carolina Panthers

The concept was simple, but limited by the fact that there were few antennas available that could do the job effectively. Creative technicians created hybrid assemblies that combined multiple antennas into arrays that rotated polarization and tightened the antenna beam to paint the smallest usable coverage pattern possible. In time, this gap was addressed and today there are antennas specifically developed for use in overhead HD deployments – Stadium Antennas.

Typically, Stadium Antennas are installed in the ceilings above seating and/or on the walls behind seating because those locations are relatively easy to cable and minimize cost. We categorize these deployments as Overhead Deployments.

From overhead to ‘front and back’

First generation overhead deployments generally suffer from a lack of overhead mounting locations to produce sufficient coverage across the entire venue. In football stadiums, the front rows of the lower bowl are typically not covered by an overhang that can be used for antenna placement.

These rows are often more than 100 feet from the nearest overhead mounting location. The result is that pure overhead deployments leave some of the most expensive seats in the venue with little or no coverage. Further, due to the length of these sections, antennas at the back of the section potentially service thousands of client devices [4].

As fans joined these networks, deployments quickly became over-loaded and generated service complaints for venue owners. The solution was simple — add antennas at the front of long sections to reduce the total client load on the access points at the back. It was an effective band-aid that prioritized serving the venues’ most important and often most demanding guests.

This approach increased the complexity of installation as it was often difficult to cable access points located at the front of a section.

And for the first time, antennas were placed where they were subject to damage by fans, direct exposure to weather, and pressure washing [5]. With increased complexity, came increased costs as measured by the average cost per installed access point across a venue.

Because these systems feature antennas at the front and rear of each seating section, we refer to these deployments as ‘Front-to-Back Deployments.’ While this approach solves specific problems, it is not a complete solution in larger venues.

‘Filling In’ the gaps

Data collected from Front-to-Back Deployments proved to designers that moving the antennas closer to end users:
— covered areas that were previously uncovered;
— increased average data rates throughout the bowl;
— used the available spectrum more effectively; and
— increased total system capacity.

The logical conclusion was that additional antennas installed between the front and rear antennas would further increase system capacity. In long sections these additional antennas would also provide coverage to fans that were seated too far forward of antennas at the rear of the section and too far back from antennas at the front of the section. The result was uniform coverage throughout the venue.

In response, system designers experimented with hand rail mounted access points. Using directional antennas, coverage could be directed across a section and in opposition to the forward-facing antennas at the rear of the section and rear-facing antennas at the front of a section. These placements filled in the gaps in a Front-to-Back Deployment, hence the name ‘In-Fill Deployment.’

While these new In-Fill Deployments did their job, they added expense to what was already an expensive endeavor. Mounting access points on handrails required that a hole be drilled in the stadia at each access point location to cable the installed equipment. With the access point and antenna now firmly embedded in the seating, devices were also exposed to more traffic and abuse. Creative integrators came to the table with hardened systems to protect the equipment – handrail enclosures. New costs included: using ground-penetrating radar to prepare for coring; enclosure fabrication costs; and more complex conduit and pathway considerations. A typical handrail placement could cost four times the cost of a typical overhead placement and a designer might call for 2 or 3 handrail placements for every overhead placement.

Getting closer, better, faster: Proximate Networks

In-Fill strategies substantially solved the coverage problem in large venues. Using a combination of back of section, front of section, and hand-rail mounted access points, wireless designers had a tool box to deliver full coverage.

But with that success came a new problem. As fans discovered these high density networks and found new uses for them, demands on those networks grew rapidly, especially where teams or venue owners pushed mobile-device content strategies that added to the network load. In-spite of well placed access points, fan devices did not attach to the in-fill devices at the same rate that they attached to the overhead placements [6]. In-fill equipment remained lightly used and overhead placements absorbed hundreds of clients. Gains in system capacity stalled.

Close-up look at U.S. Bank Stadium railing enclosure during final construction phase, summer 2016. Credit: Paul Kapustka, MSR

Close-up look at U.S. Bank Stadium railing enclosure during final construction phase, summer 2016. Credit: Paul Kapustka, MSR

To overcome uneven system loading, designers needed to create a more even distribution of RF energy within the deployment. That required a consistent approach to deployment, rather than a mix of deployment approaches. The result was the elimination of overhead antennas in favor of access points and antennas installed within the crowd, closest to the end use; hence the name ‘Proximate Networks.’

Proximate networks come in two variations: handrail only and under seat only. In the hand rail only model, the designer eliminates overhead and front of section placements in favor of a dense deployment of hand rail enclosures. In the under seat model, the designer places the access point and antenna underneath the actual seating (but above the steel or concrete decking). In both models, the crowd becomes an important part of the design. The crowd attenuates the signal as it passes through their bodies resulting in consistent signal degradation and even distribution of RF energy throughout the seating bowl. The result is even access point loading and increased system capacity.

An additional benefit of embedding the access points in the crowd is that the crowd effectively constrains the output of the access point much as a wall constrains the output of an access point in a typical building. Each radio therefore hears fewer of its neighbors, allowing each channel to be re-used more effectively. And because the crowd provides an effective mechanism for controlling the spread of RF energy, the radios can be operated at higher power levels which improves the link between the access point and the fan’s device. The result is more uniform system loading, higher average data rates, increased channel re-ue, and increases in total system capacity.

While Proximate Networks are still a relatively new concept, the early data (and a rapid number of fast followers) confirms that if you want the densest possible network with the largest possible capacity, then a Proximate Network is what you need.

The Financials: picking what’s right for you

From the foregoing essay, you might conclude that the author’s recommendation is to deploy a Proximate Network. However, that is not necessarily the case. If you want the densest possible network with the largest possible capacity, then a Proximate Network is a good choice. But there are merits to each approach described and a cost benefit analysis should be performed before a deployment approach is selected.

For many venues, Overhead Deployments remain the most cost effective way to provide coverage. For many smaller venues and in venues where system utilization is expected to be low, an Overhead deployment can be ideal.

Front-to-Back deployments work well in venues where system utilization is low and the available overhead mounting assets can’t cover all areas. The goal of these deployments is ensuring usable coverage, not maximizing total system capacity.

In-fill deployments are a good compromise between a coverage-centric high density approach and a capacity-centric approach. This approach is best suited to venues that need more total system capacity, but have budget constraints the prevent selecting a Proximate approach.

Proximate deployments provide the maximum possible wireless density for venues where connectivity is considered to be a critical part of the venue experience.

Conclusion

If your venue is contemplating deploying a high density network, ask your integrator to walk you through the expected system demand, the calculation of system capacity for each approach, and finally the cost of each approach. Make sure you understand their assumptions. Then, select the deployment model that meets your business requirements — there is no “one size fits all” when it comes to stadium Wi-Fi.

Bill Anderson, AmpThink

Bill Anderson, AmpThink

Bill Anderson has been involved in the design and construction of wireless networks for over 20 years, pre-dating Wi-Fi. His first experience with wireless networking was as a software developer building software for mobile computers communicating over 400 MHz and 900 MHz base stations developed by Aironet (now part of Cisco Systems).

His work with mobile computing and wireless networks in distribution and manufacturing afforded him a front row seat to the emergence of Wi-Fi and the transformation of Wi-Fi from a niche technology to a business critical system. Since 2011 at AmpThink Bill has been actively involved in constructing some of the largest single venue wireless networks in the world.

Footnotes

^ 1. A proxy for the calculation of overall system capacity is developed by multiplying the average speed of communication of all clients on a channel (avg data rate or speed) by the number of channels deployed in the system (available spectrum) by the number of times we can use each channel (channel re-use) or [speed x spectrum x re-use]. While there are many other parameters that come into play when designing a high density network (noise, attenuation, reflection, etc.), this simple equation helps us understand how we approach building networks that can support a large number of connected devices in an open environment, e.g. the bowl of a stadium or arena.

^ 2. Co-channel interference refers to a scenario where multiple access points are attepting to communicate with client devices using the same channel. If a client or access point hears competing communication on the channel they are attempting to use, they must wait until that communication is complete before they can send their message.

^ 3. Access Point is the term used in the Wi-Fi industry to describe the network endpoint that client devices communicate with over the air. Other terms used include radio, AP, or WAP. In most cases, each access point is equipped with 2 or more physical radios that communicate on one of two bands – 2.4 GHz or 5 GHz. HD Wi-Fi deployments are composed of several hundred to over 1,000 access points connected to a robust wired network that funnels guest traffic to and from the internet.

^ 4. While there is no hard and fast rule, most industry experts agree that a single access point can service between 50 and 100 client devices.

^ 5. Venues often use pressure washers to clean a stadium after a big event.

^ 6. Unlike cellular systems which can dictate which mobile device attaches to each network node, at what speed, and when they can communicate, Wi-Fi relies on the mobile device to make the same decisions. When presented with a handrail access point and an overhead access point, mobile devices often hear the overhead placement better and therefore prefer the overhead placement. In In-Fill deployments, this often results in a disproportionate number of client devices selecting overhead placements. The problem can be managed by lowering the power level on the overhead access point at the expense of degrading the experience of the devices that the designer intended to attach to the overhead access point.