State of the Stadium Network, 2018: Smooth sailing right now but rough waters ahead?

Here at Mobile Sports Report we used to have a yearly survey (called “State of the Stadium”) which we used mainly to see if and when wireless networks were being deployed in large sports venues. After just a few years, it quickly became apparent that for almost all the respondents we heard from, the question was no longer “if” networks would be deployed, but just “when.” And for more than most, the “when” was happening already.

Looking back over the past year or so of our stadium profile visits, it’s clear that the still-young market of large-venue wireless connectivity has reached a certain level of maturity, especially when it comes to well-funded deployments of Wi-Fi and cellular distributed antenna system (DAS) networks. Where in the recent past the San Francisco 49ers’ Levi’s Stadium was a groundbreaker with its extensive wireless coverage when it opened in 2014, such networks have now become the standard expectation for new venues like the Sacramento Kings’ Golden 1 Center, U.S. Bank Stadium in Minneapolis, Mercedes-Benz Stadium in Atlanta, T-Mobile Arena in Las Vegas and even in many “Tier 2” stadiums like Colorado State University’s new football stadium.

Similar high-quality networks are also finding their way into older stadiums as those venues get networking for the first time or revamp their initial outlays. Over the past couple years we’ve seen new networks appear in old venues like Notre Dame Stadium, SAP Center in San Jose and more recently, the Alamodome. Other venues that led the initial charge toward wireless networks for fans, like the New England Patriots’ Gillette Stadium, the Bank of America Stadium in Charlotte and Lincoln Financial Field in Philadelphia, all had recent upgrades to their wireless infrastructures as the venues smartly stayed in tune with the ever-increasing demands of fans and their mobile devices. And then there are pioneers like AT&T Park and AT&T Stadium, which have always managed to lead the way in finding new ways to keep their connectivity at state of the art levels.

What really helps point to a certain level of maturity is the different methods and manufacturers who all have figured out their own ways to get things done. Wi-Fi antenna deployments placed under seats, in railing mounts or overhead have all proven themselves in numerous live tests; DAS deployments have shown similar successes in a somewhat corresponding number of techniques and equipment usages; in all, there seems to be well more than one path to a successful wireless infrastructure. But before we start taking networking for granted as a commodity like electricity or plumbing, it’s a good time to remember that unlike those two services, networking doesn’t stand still. As new end-user devices and the apps they run continue to drive growth in demand, the question now is whether current Wi-Fi and DAS networks for venues will be able to keep up, or whether new technology is needed.

The need for more wireless spectrum

Editor’s note: This profile is an excerpt from our latest STADIUM TECH REPORT issue for Spring 2018, which includes a look at Wi-Fi performance during the Final Four, a recap of wireless performance at Super Bowl 52, a profile of new venue construction in Los Angeles and more! DOWNLOAD YOUR FREE COPY right now from our site!

In a previous lifetime as a cellular systems analyst, yours truly wrote a long research paper about the importance of spectrum, predicting that at some point the leading wireless carriers, namely AT&T and Verizon Wireless, were going to need new bands to expand their services. While there have been some technological tweaks to find more capacity than originally thought in the 4G LTE space, on the cellular front the march to so-called “5G” systems is well underway, with the predictable problem of marketing promises being far out ahead of usable reality.

While we’ll save an in-depth look at 5G for another point in time, it’s useful to notice that all the large wireless carriers are already making 5G announcements, of 5G trials, of 5G local networks and other assorted claims of leadership. While nobody really knows exactly what 5G is for sure, what is known is that to get to the faster/better claims being staked there is going to be new spectrum in play for 5G services, and some of it may work better than others for use inside venues.

What’s clearly not known at all is how 5G services will arrive for sports stadiums, as in whether or not they will fit inside the current DAS model. Will carriers be able to share 5G systems like they do now on neutral-host DAS deployments? Right now that’s doubtful given that carriers like Sprint and T-Mobile are already talking about 5G deployments on much different spectrum spaces — and if the proposed merger between the two carriers becomes reality, how does that further change the 5G planning landscape? Perhaps the only thing we can be sure of is a lot of mixed messages in the near future about the best way to move forward from a cellular perspective.

Will carriers take over unlicensed bands?

On the Wi-Fi side of things, a smart friend of ours once claimed that when it came to Wi-Fi network deployments, “real estate is the new spectrum” since building owners could pretty much stake a free claim to the unlicensed spectrum spaces within their walls.

But now, there may be some storm clouds brewing as carriers seek to implement systems that let them use some of the 5 GHz unlicensed channels for LTE networks, an idea with possible consequences for current venue networks.

Aruba’s Chuck Lukaszewski wrote about this issue for Mobile Sports Report last summer, and some of his points bear repeating and remembering, especially these two: One, most Wi-Fi networks in large stadiums are already “spectrum constrained,” meaning that they need all the channels in the unlicensed band to ensure good service across an entire venue; Two, by introducing a system where cellular providers would use a chunk of that spectrum for LTE networks, the effects are as yet unknown — and venue operators would most likely be at the mercy of carriers to both acknowledge and comply with any possible conflicts that might arise.

As we here at Mobile Sports Report are cynics of the first order, our first question in this matter is about whether or not there are any clauses in those contracts venues have signed with carriers that will allow the cellular providers to “share” spectrum in the Wi-Fi space as well. While Verizon, AT&T and other service providers have paid quite a few dollars to support many stadium systems, it’s worth it to wonder if some of those deals may not look so good going forward if they include the legal ability for carriers to poach spectrum currently used only by Wi-Fi.

CBRS to the rescue?

Another technology/spectrum space we’ll be looking at more closely in the near future is the Citizens Broadband Radio Service, which sits at the 3.5 GHz space in the electromagnetic spectrum roster. Though new FCC rules on the use of this spectrum (currently used primarily by the U.S. Navy) haven’t yet been solidified, it seems from all signals that eventually what will emerge is a kind of tiered licensing type of situation with licenses that cover large, small or even local geographic areas, which may allow for building owners to set up private networks that work sort of like Wi-Fi does now.

One attractive option being touted is “private” LTE networks, where venue or building owners could build their own DAS-like LTE network infrastructure for CBRS spectrum, then rent out space to carriers or run their own networks like Wi-Fi but with LTE technology instead.

What’s unknown is exactly how the licensing scheme will shake out and whether or not big carriers will be able to dominate the space; here it’s helpful to remember that big wireless carriers typically spend millions in lobbying fees to influence decisions in places like the FCC, and venue owners spend… nothing. Verizon recently announced it expects to have CBRS-ready devices working before the end of this calendar year, so it’s likely that CBRS systems may be more of an immediate concern (or opportunity) for venues than 5G. And the marketing folks behind CBRS are on full speed ahead hype mode, even crafting a marketing name called “OnGo” as an easier-to-sell label than the geeky “CBRS.” So buyer beware.

Already, Mobile Sports Report has heard chatter from folks who are helping design networks for greenfield operations that the choices simply aren’t as clear as they were recently, when you could pretty much count on Wi-Fi and DAS to meet whatever wireless needs there were. While that duo may still be able to get the job done for the near future, looking farther ahead the direction is much less clear and the sailing no doubt much less smooth. Here at MSR, we’ll do our best to help batten the hatches and give as much clear guidance as we can. At the very least, it should be an interesting trip.

Intel True View coming to Niners, Vikings apps; but will anyone watch?

Screen shot of an Intel-powered 3D view of an NFL game.

From a sports viewing standpoint, there may not be a more compelling new technology lately than Intel’s True View platform, which can provide 360-degree 5K-resolution looks at a sporting event that are equally stunning and informative, a true leap in performance for TV-watching fans. Last week, a move by Intel to provide venture funding for app development firm VenueNext seemed like a great deal for fans of the NFL’s San Francisco 49ers and the Minnesota Vikings, whose stadium apps are slated to get the Intel technology to support 3D replay views, perhaps as early as next season.

While both the funding and the replay plans are positive moves for sports fans, our question is, will anyone really watch? While VenueNext’s app platform seems to be gaining momentum with pro teams from all the major U.S. sports leagues, the instant replay function — which was part of VenueNext’s first platform, the app for the Niners’ Levi’s Stadium — has never really caught on, peaking at the start and slowly dwindling thereafter. Replays on other mobile platforms, however — like Twitter — are enormously popular, with one Vikings video alone earning more than 4 million views.

VenueNext CEO John Paul at last week’s Intel event.

Though the Intel/VenueNext announcement garnered a lot of headlines last week, none of the other stories mentioned how little-used the instant replay function is. In fact, almost every team or stadium that has instant-replay functionality in its app declines to provide any statistics for the feature, a shyness we can only attribute to the fact that the numbers are embarrassingly low. The only one VenueNext was able to tell us about was the Niners’ app, which according to VenueNext generated approximately 1,000 views per game last season.

During 2014, the first season Levi’s Stadium was open, the app peaked early with 7,800 replays during that year’s home opener; by the end of the season that number was down to fewer than 4,000 replays per game, which prompted Niners CEO Jed York to label the service’s low uptake a surprising disappointment. Now it’s even used far less often. (VenueNext competitor YinzCam also has instant replay available for many of its team apps, but also does not provide team-by-team viewing stats.)

One reason York cited for the low replay use was the quality and frequency of replays shown on the Levi’s Stadium large video boards; while in the past many pro teams kept replays to a minimum (especially if they were unflattering to the home team) the acceptance of replay review in many leagues and a general change of behavior now sees almost constant replay showing, as well as live action on in-stadium video boards. And while the process to produce in-app video replays is stunningly quick, even the fastest replay functionality combined with the need to navigate a device screen is usually well behind live play.

Screen shot of instant replay service inside Levi’s Stadium app.

Since the amount of funding Intel is providing VenueNext was not announced, it’s hard to tell whether or not either company will consider the transaction worthwhile if the replay viewing numbers remain low. Another problem with the app replays is that many are confined to in-stadium views only due to broadcast rights restrictions; compare that handcuff to the openness of Twitter, where a video of the “Minnesota Miracle” walkoff TD shot by a quick-thinking Minnesota Vikings employee (Scott Kegley, the team’s executive director of digital media & innovation) during last year’s playoffs garnered more than 4 million views and recently won a Webby award.

If there’s a dirty not-so-secret about stadium wireless connectivity, it’s that almost every report we’ve ever seen about app and service usage inside venues puts use of open social media platforms like Twitter, Snapchat and Facebook far, far above team and stadium app usage. Though stadium and team apps are gaining more traction recently due to their embrace of service functionality for things like parking, concession transactions and digital ticketing, we still haven’t seen any reports or evidence that in-stadium instant replays are gaining in use.

Will Intel’s revolutionary technology change the game for in-app replays? We’ll track the developments and keep asking for stats, so stay tuned.

Everest going solo in Wi-Fi equipment market

Everest Wi-Fi APs (lower left, middle right) mounted underneath an overhang at Lincoln Financial Field in Philadelphia. Credit: Panasonic (click on any photo for a larger image)

Once a very tightly coupled part of electronics giant Panasonic, Everest Networks is now going solo in its pursuit of market share in the competitive arena for sports stadium and large public venue Wi-Fi deployments.

Though Everest representatives claimed that business is normal and usual, the emergence of Everest as a standalone company is a recent thing, even according to news clips posted on the company website. There, reports of some recent customer wins and news accounts of a high-traffic showing at an Everest-powered network at the Philadelphia Eagles’ Lincoln Financial Field all refer to the equipment as being from Panasonic, or as “The Everest Network Solution by Panasonic,” as a Panasonic press release describes it.

Apparently a recent reorganization at Panasonic caused the change in the marketing structure around the Everest product line; the products themselves have drawn interest in the stadium Wi-Fi market for their advertised ability to provide wider and deeper coverage patterns than other existing products.

Though Everest COO Simon Wright said in a phone interview Friday that “nothing has changed from a product perspective” and that the relationship between Panasonic and the Everest product is “exactly the same,” according to several sources the internal reorganization has eliminated multiple jobs inside Panasonic related to Everest, and caused the formation of the standalone Everest entity, which according to Wright’s own LinkedIn profile happened just last month. According to Wright, the headquarters office is in Santa Clara, Calif., is “within sight” of the San Francisco 49ers’ Levi’s Stadium.

New models, new deals?

While the explanation about the change of business direction from the Panasonic side will have to wait — Panasonic has not yet replied to our inquiries — according to Wright the Everest business is looking good, with new models coming out as well as some new (yet unannounced) customer wins in the near-term pipeline. According to Wright one of the new products is a Wi-Fi AP that can send a signal 300 feet, an attractive option for stadiums and venues with high overhangs that need to reach distant seats. One of the advantages touted by Panasonic and now Everest is that its APs include multiple radios, reducing the amount of actual hardware that venues may need to deploy.

New Everest logo from the company website

However, no Everest stadium customers have as of yet agreed to allow any up-close testing or provided any detailed season-long performance metrics. While team officials at the Philadelphia Eagles have provided praise for the Everest gear in press releases, they have not yet answered requests for live interviews. John Spade, CTO for the NHL’s Florida Panthers and BB&T Center in Sunrise, Fla., has tweeted favorably about a Panasonic/Everest deployment at the arena whose networks he oversees, and said in subsequent messages that he hopes the equipment line will continue.

According to Wright, the path ahead for Everest is a typical one for a startup, with hiring and funding tasks part of the mix. While he would not provide a total of funding that Everest has to operate, or how many members it has on its team, he did say that Panasonic remains a major investor and will continue to resell and promote the product line.

“They [Panasonic] just secured a major contract for us,” Wright claimed. “They will continue to be an important partner for us.”

Wrigley Field gets new DAS in time for Cubs’ home opener

The Chicago Cubs’ Wrigley Field will have a new DAS working for opening day. Credit for these 2017 season pictures: Paul Kapustka, MSR (click on any photo for a larger image)

After some construction delays that no Chicago Cubs fans minded, the Friendly Confines of Wrigley Field will have a new high-performance distributed antenna system (DAS) operational for Monday’s scheduled Cubs home opener for the 2018 season.

Designed and deployed by DAS Group Professionals, the new in-stadium cellular network was originally scheduled to be ready by last year; but when the Cubs took their historic march to the World Series title in 2016, many of the in-progress construction plans for Wrigley Field got delayed or rearranged, to the objection of nobody at all who cheers for the north siders.

And even though some of the most ambitious parts of the Wrigley renovation took place this winter — including removing most of the seats and concrete in the lower seating bowl to clear the way for some lower-level club spaces — the DGP crew along with the Cubs’ IT organization delivered the new cell network in time for the first pitches scheduled Monday afternoon.

Wi-Fi coming in as season goes on

“We definitely put scheduling and timing to the test, but we got it done,” said Andrew McIntyre, vice president of technology for the Chicago Cubs, in a phone interview. First announced back in 2015, the networking plan for the Wrigley renovations — which includes coverage for the plaza outside the stadium, the new team office building as well as the across-the-street Hotel Zachary that also just opened for business — also includes a new Wi-Fi network using gear from Extreme Networks. Since the Wi-Fi network is more construction-conflicted than the DAS deployment, it will be introduced gradually over the next few months, McIntyre said.

“By the All-Star break, we should have both systems online,” McIntyre said.

The DAS system deployed by DGP uses JMA equipment, just like DGP’s other big-stadium DAS deployments at the San Francisco 49ers’ Levi’s Stadium and the Sacramento Kings’ Golden 1 Center. Steve Dutto, president of DGP, acknowledged the challenge of the Wrigley buildout, including one instance where DGP technicians needed to set up scaffolding to mount antennas but couldn’t because instead of a concrete floor there was a 60-foot hole in the ground.

Hey hey!

“We worked around all that and got it done,” said Dutto. According to Dutto DGP has signed up all four major U.S. wireless carriers for the DAS, with all except Sprint operational for opening day. The head-end building for the DAS, he said, is located in what he thinks is a former hot-dog stand a half a block from the park. (If you’re looking for a snack in the head end room, just remember, in Chicago there’s no ketchup on hot dogs.)

Dutto said the DAS antennas are all overhead mounts, not a problem in Wrigley since the overhangs offer plenty of mounting spaces. However, given the historic look and feel of the park, Dutto did say that “we definitely had to tuck things away better and make sure we had good paint matches.” Not a Chicago native, Dutto said that the charm of the stadium hit him on first view.

“When we pulled up for the first time,” he said, “it was… wow. There’s nothing like it.”

Under seat for Wi-Fi will take time to deploy

The Cubs’ McIntyre, who admits to guzzling coffee by the quart these days, said the field-level renovations — which included removing all lower seats and the foundational concrete to clear out room for field-level club spaces — made finishing the Wi-Fi deployment something that couldn’t be pushed. With no overhangs covering the premium box seat areas, Wi-Fi APs there will need to be mounted under seats, something that just couldn’t get finished by Monday.

“It’s less of a technical challenge and more of a structural engineering challenge,” said McIntyre of the under-seat deployment method, which usually involves a lot of work with drilling through concrete and mounting APs in weather-sealed enclosures. McIntyre said the Cubs and Extreme also plan to use under-seat deployments in Wrigley’s famous outfield bleachers, which also lack any overhead infrastructure. In what he termed a “slow roll,” McIntyre said parts of the Wi-Fi network will come online gradually as the season progresses, starting first with the spaces outside the stadium.

Bringing backbone power to the new network is partner Comcast Business, which just announced a sponsorship deal with the Cubs that will see a “XfinityWiFi@Wrigley” label on the Wrigley Wi-Fi SSID. According to McIntyre Comcast will bring in twin 10-Gbps pipes to power the Wrigley Wi-Fi network.

This panoramic view shows why the lower level seats will need under-seat APs for Wi-fi

Average per-fan Wi-Fi use total jumps again at Super Bowl 52

Seen in the main concourse at U.S. Bank Stadium: Two IPTV screens, one Wi-Fi AP and a DAS antenna. Credit: Paul Kapustka, MSR

After a year where the actual amount of average Wi-Fi data used per connected fan at the Super Bowl dropped, the trend of more data used per fan reversed itself again to a new peak at Super Bowl 52, with an average total of 407.4 megabytes per user.

Even though the number of unique connections to the Wi-Fi network at U.S. Bank Stadium for Super Bowl 52 also increased to a record 40,033 users (according to the official statistics compiled by Extreme Networks), the jump from 11.8 terabytes of Wi-Fi data used at Super Bowl 51 to 16.31 TB used at Super Bowl 52 pushed the average per-user number to the top, surpassing the 333 MB per user number from Super Bowl 51, as well as the 370 MB per user mark seen at Super Bowl 50.

While this statistic has not ever been called out by the Extreme Networks Super Bowl compilations, we here at MSR think it is a vital mark since it shows that even with more users on the network those connected users are still using more data. That means that IT departments at venues everywhere should probably still plan for no letup in the overall continued growth in demand for bandwidth at large-venue events, especially at “bucket list” events like the Super Bowl.

Last year we guessed the drop in per-user totals from Super Bowl 50 to Super Bowl 51 might have been due to a larger number of autoconnected users, but we never got an answer from the Extreme Networks team when we asked that question. At U.S. Bank Stadium there was also an autoconnect feature to the Wi-Fi for Verizon Wireless customers, but it didn’t seem to affect the per-user total mark.

Fans use 16.31 TB of Wi-Fi data during Super Bowl 52 at U.S. Bank Stadium

A Wi-Fi handrail enclosure at U.S. Bank Stadium in Minneapolis. Credit: Paul Kapustka, MSR (click on any photo for a larger image)

It is now official — we have a new record for most Wi-Fi data used at a single-day event, as fans at U.S. Bank Stadium in Minneapolis for Super Bowl 52 used 16.31 terabytes of data on the Wi-Fi network.

According to statistics compiled by Extreme Networks during the Philadelphia Eagles’ thrilling 41-33 victory over the New England Patriots Sunday night, the AmpThink-designed network which uses Cisco Wi-Fi gear also saw 40,033 unique users — 59 percent of the 67,612 in attendance — a new top percentage total for any single-game network experience we’ve been told about. (The Dallas Cowboys saw approximately 46,700 unique Wi-Fi users during a playoff game last season, about 50 percent of attendance at AT&T Stadium.)

The network also saw a peak concurrent connection of 25,670 users, and a peak data transfer rate of 7.867 Gbps, according to the numbers released by Extreme. Though Extreme gear was not used in the operation of the network, Extreme has a partnership deal with the NFL under which it provides the “official” network analytics reports from the Super Bowl.

The final total of 16.31 TB easily puts Super Bowl 52 ahead of the last two Super Bowls when it comes to Wi-Fi data use. Last year at NRG Stadium in Houston, there was 11.8 TB of Wi-Fi use recorded, and at Super Bowl 50 in 2016 there was 10.1 TB of Wi-Fi data used at Levi’s Stadium in Santa Clara, Calif. So in reverse chronological order, the last three Super Bowls are the top three Wi-Fi events, indicating that data demand growth at the NFL’s biggest game shows no sign of slowing down. Combined with the 50.2 TB of cellular data used in and around the stadium on game day, Super Bowl 52 saw a total of 66.51 TB of wireless traffic Sunday in Minneapolis.

Confetti fills the air inside U.S. Bank Stadium after the Philadelphia Eagles defeated the New England Patriots in Super Bowl LII. Credit: U.S. Bank Stadium

Super Bowl 52 represented perhaps a leap of faith, in that the handrail-enclosure Wi-Fi design had not yet seen a stress test like that found at the NFL’s biggest event. Now looking ahead to hosting the 2019 Men’s NCAA Basketball Final Four, David Kingsbury, director of IT for U.S. Bank Stadium, can be forgiven for wanting to take a bit of a victory lap before we set our Wi-Fi sights on Atlanta’s Mercedes-Benz Stadium, home of Super Bowl 53.

“AmpThink, CenturyLink and Cisco designed and built a world-class wireless system for U.S. Bank Stadium that handled record-setting traffic for Super Bowl LII,’ Kingsbury said. “AmpThink president Bill Anderson and his team of amazing engineers were a pleasure to work with and the experts at Cisco Sports and Entertainment supported us throughout the multi-year planning process required for an event of this magnitude. High-density wireless networking is such a challenging issue to manage, but I am very happy with our results and wish the team in Atlanta the best next year. The bar has been raised.”

THE LATEST TOP 10 FOR WI-FI

1. Super Bowl 52, U.S. Bank Stadium, Minneapolis, Minn., Feb. 4, 2018: Wi-Fi: 16.31 TB
2. Super Bowl 51, NRG Stadium, Houston, Feb. 5, 2017: Wi-Fi: 11.8 TB
3. Super Bowl 50, Levi’s Stadium, Santa Clara, Calif., Feb. 7, 2016: Wi-Fi: 10.1 TB
4. Minnesota Vikings vs. Philadelphia Eagles, NFC Championship Game, Lincoln Financial Field, Philadelphia, Pa., Jan. 21, 2018: Wi-Fi: 8.76 TB
5. Kansas City Chiefs vs. New England Patriots, Gillette Stadium, Foxborough, Mass., Sept. 7, 2017: Wi-Fi: 8.08 TB
6. Green Bay Packers vs. Dallas Cowboys, Divisional Playoffs, AT&T Stadium, Arlington, Texas, Jan. 15, 2017: Wi-Fi: 7.25 TB
7. Southern California vs. Notre Dame, Notre Dame Stadium, South Bend, Ind., Oct. 21, 2017: 7.0 TB
8. WrestleMania 32, AT&T Stadium, Arlington, Texas, April 3, 2016: Wi-Fi: 6.77 TB
9. Super Bowl 49, University of Phoenix Stadium, Glendale, Ariz., Feb. 1, 2015: Wi-Fi: 6.23 TB
10. Georgia vs. Notre Dame, Notre Dame Stadium, South Bend, Ind., Sept. 9, 2017: Wi-Fi: 6.2 TB

U.S. Bank Stadium in Minneapolis before the start of Super Bowl LII