Oklahoma leads the way with Wi-Fi 6 network at football stadium

An AmpThink handrail enclosure for Wi-Fi APs at Oklahoma. Credit all photos: Paul Kapustka, MSR (click on any picture for a larger image)

In the long history of college football, the Univeristy of Oklahoma is a name that is always somehow in the discussion when it comes to top teams and Heisman-quality talent. And now you can add stadium Wi-Fi to the list of things Oklahoma does well, after a deployment of a 100 percent Wi-Fi 6 network at Gaylord Family-Oklahoma Memorial Stadium was in place for most of the recent football season.

Formerly among the most conspicuous Wi-Fi have-nots among big-school stadiums, the Sooners have now moved to the front of the class with a network of approximately 1,350 access points in their 80,126-seat stadium, all new models that support the emerging Wi-Fi 6 standard, also known as 802.11ax. Beyond connectivity, the stadium’s upgraded facilities reflect a growing trend in user-centric digital experiences, much like those found in a betrouwbaar casino zonder Cruks, where secure and accessible platforms ensure seamless engagement for users. With a deployment led by AT&T, using gear from Aruba, a Hewlett Packard Enterprise company, and a design and deployment from AmpThink, using mainly handrail-mounted enclosures in the main bowl seating areas, OU fans now have the ability to connect wirelessly at the most advanced levels, with a technology base that will support even better performance as the balance of attendee handsets starts to catch up to the network with support for Wi-Fi 6.

“We’re very excited” about the new network, said David Payne, senior technology strategist for athletics at the University of Oklahoma’s information technology department. Payne, who has been at Oklahoma since 2003, has spent the last several years shepherding the overall stadium Wi-Fi plan into place, starting first with Wi-Fi coverage for the stadium RV parking lots, then adding initial forays into stadium Wi-Fi deployment when Oklahoma renovated the south part of the stadium three years ago. But this past offseason was the big push to full stadium coverage, a trek that included a switch in equipment vendors that was prompted by Oklahoma’s solid commitment to the emerging Wi-Fi 6 standard.

Committed to Wi-Fi 6 for the future

Editor’s note: This profile is from our latest STADIUM TECH REPORT, which is available to read instantly online or as a free PDF download! Inside the issue are profiles of the new Wi-Fi and DAS networks at Chase Center, as well as profiles of wireless deployments at Fiserv Forum and the University of Florida! Start reading the issue now online or download a free copy!

A water-sealed connection for the bottom of a handrail enclosure.

If there was a tricky time to pull the trigger on Wi-Fi 6, it was last summer, when not every vendor in the market could ensure it would have enough gear on hand to fully supply a big stadium like Oklahoma’s. And even though Wi-Fi 6 gear is new and generally more expensive than previous versions, for Payne and Oklahoma the long-term benefits combined with the periodic ability to refresh something as significant as a football stadium network made committing to Wi-Fi 6 somewhat of a no-brainer.

Payne, like many other big-school IT leaders, has spent years helping administrators and others at budget- deciding levels of leadership at his school try to understand the benefits of stadium-wide Wi-Fi connectivity. For many of those years, it just didn’t make sense to try to push through the multi-million-dollar expense of a project “that would only be used six or seven Saturdays a year,” Payne said. “There’s always a difficulty in telling the story of what value you receive in this since it’s different from traditional revenue streams,” Payne said. “There isn’t a direct dollar seen from Wi-Fi users.”

But with the late-2018 approval of a capital expenditure project to revamp the football stadium’s lower-bowl seating with new handrails, wider seats and other ADA-related improvements, Payne and the IT team were able to weave in the extra $3 million (out of a total project cost of $14.9 million) it would cost to bring full Wi-Fi coverage to the entire stadium.

“It’s just taking advantage of the timing to get economies of scale,” said Payne. Because of the already- planned work on the handrails, Oklahoma was able to add the AmpThink-designed handrail Wi-Fi enclosures (which use the handrail pipes to carry cabling) for a fraction of the cost of having to do that work as a separate project, Payne said. The university had also installed new backbone gear and cabling during the south end zone renovation, so that cost was already paid for.

The decision to commit to Wi-Fi 6, Payne said, was based on standard release projections from manufacturers. “We paid close attention to projected order availability and ship dates,” Payne said. “We were felt that if we were able to receive the gear by June, we could complete the project on time.”

Though some manufacturers were not sure of being able to fully deliver Wi-Fi 6 gear, Aruba, Payne said, had “high confidence” in meeting the deadlines, and won the deal. According to Payne, all the Aruba gear was shipped in time to begin construction in June.

A handrail enclosure in the lower bowl

“It’s important for us to get the full life cycle of technology, so that’s why we decided to go 100 percent Wi-Fi 6,” Payne said.

Attention to detail an AmpThink hallmark

On a visit before and during a home game against Texas Tech in late September 2019, Mobile Sports Report was able to test the live network in all parts of the stadium, with strong performance at even the highest seating levels as well as in sometimes overlooked spots like the long ramps that fans walk up to get in and out of the venue.

The Oklahoma deployment was part of a very busy summer for AmpThink, with similar Wi-Fi design and deployments at Oklahoma, Ohio State and Arkansas. Like those two others, Oklahoma’s main bowl AP deployment was in the patented AmpThink handrail enclosures, each stamped with the distinctive “OU” logo.

The handrail deployment system, which typically includes a core drill through the concrete floor to bring wiring into the handrail tubing, is now a standard process for AmpThink, following similar deployments at the Minnesota Vikings’ U.S. Bank Stadium and at Notre Dame Stadium, among others. At Oklahoma, AmpThink said it used 10 different handrail enclosure designs to fit all the necessary spaces.

AmpThink president Bill Anderson was present during our visit and took great pride in showing off some of the finer points of an AmpThink deployment, including a method of using a metal sleeve and some clever waterproof paint and sealant to ensure that no moisture finds its way into the holes used for cable delivery.

“We spend a tremendous amount of time [during deployments] making sure there isn’t any water leakage under the stands,” Anderson said. “Because you never know what is going to be below. This is a big part of what we do. We don’t just sell an enclosure.”

Concourse APs visible high on concrete posts

The same can be said of AmpThink’s overall network designs, which it monitors and tests and tweaks as fans use the system. On the game day we visited, no fewer than four AmpThink employees were at the stadium in the network control room, checking AP performance and network usage.

“We’re pretty proud of what we can do,” Anderson said about the company’s track record for network design in large venues. “We have proven formulas which we reliably implement.”

Solid speed tests throughout the venue

At 10:20 a.m. local time, just ahead of the early 11 a.m. kickoff, Mobile Sports Report started our testing inside the main-level concourse, where fans were already lining up to purchase cold beer, another first at the stadium this past season. In the midst of the entering crowds we got a speedtest of 55.9 Mbps on the download side and 43.7 Mbps on the upload side, an inkling of the strong tests we were to see everywhere we walked. In the concourses and near concession stands, a mix of overhead and wall-mounted APs provided coverage.

Up in the stands, we took our first test among the railing-mounted enclosures in section 6, row 51, just about at the 50-yard line. We got a mark of 68.2 Mbps / 58.7 Mbps before the stands were completely full. We then hiked up to row 67, which was underneath the press box overhang and served by overhead APs, not railing enclosures. There we got a speedtest of 27.8 Mbps / 49.5 Mbps, a half hour before kickoff.

One more speedtest in the lower bowl (around the 30-yard line, in row 19) netted a mark of 68.9 Mbps / 61.2 Mbps; then as we walked around to the south end zone, we got a mark of 38.7 Mbps / 64.3 Mbps in the south concourse, busy with fans getting food and drink ahead of the imminent kickoff.

The recently renovated south end of the stadium has a series of loge boxes and other premium seating options, and has an overhang which provides additional real estate for Wi-Fi AP mounting options. Ducking into a loge box (covered by overhead APs) for a quick test we got a mark of 36.8 Mbps / 54.2 Mbps just before kickoff. Moving around to the corner of the south stands for the pregame ceremonies we got a mark of 33.7 Mbps / 63.8 Mbps even as all the phones were out to capture the team run-on and school song rendition. After kickoff, we went into the crowded main east concourse and got a mark of 43.2 Mbps / 46.6 Mbps amidst all the late-arrivers.

Good coverage in the stairwells

Wi-Fi antennas in an overhang deployment

If there is one area where stadiums sometimes skimp on wireless coverage it’s in the stairwells and pedestrian ramps, which may not seem like an important place to have connectivity. But at Oklahoma, the multiple switchbacks it takes to climb from ground level to the top seating areas are all well covered with Wi-Fi, as we got a mark of 39.9 Mbps / 29.5 Mbps during a brief rest stop on our hike to the top of the east stands.

At a concession stand on the top-level concourse we got a mark of 61.3 Mbps / 70.5 Mbps, as we admired the neatness of the core drilling we could see that got the cabling to the underside of the seating areas above. In the stands we got a mark of 57.5 Mbps / 69.5 Mbps at one of the highest rows in the stadium, row 24 of section 226, a half hour after the game’s start.

According to Payne our visit coincided with the first live game with the Wi-Fi 6 software fully turned on, part of a sort of rolling start to the network deployment which wasn’t fully live at the first game on Aug. 31.

“It wasn’t without some hiccups and headaches,” said Payne of the overall deployment, which included a small number of temporary black-colored handrail enclosures from AmpThink, which saw its single source of handrail molding material run out of supply late in the summer. According to Payne Oklahoma started the season with 966 radios working on the network, ramping up with more at each home game until reaching full capacity later in the season. AmpThink had also replaced the black enclosures by the time of our visit with the standard silver ones.

Oklahoma also experienced what other venues deploying Wi-Fi 6 may find – that some of the very oldest devices still in use may have issues in connecting to the Wi-Fi 6 equipment. Payne said one such
problem surfaced in the press box (where reporters were using older laptops) but it was solved by creating some virtual APs which were tuned to an older version of the Wi-Fi standard.

Oklahoma fans during pregame ceremonies

OU also didn’t widely promote the network early in the season, but by the Oct. 19 home game with West Virginia not only was the school promoting the network on the stadium’s big video boards, the IT team also added the ability for students to automatically join the stadium network via their regular WiFi@OU SSID used around campus.

With 82,620 in attendance for the West Virginia game the total number of Wi-Fi users took a big jump from the previous high, with 25,079 unique connections, according to numbers provided by Payne. When Iowa State came to Norman on Nov. 9, the network saw its highest usage with 32,673 unique users, who used approximately 4.2 terabytes of data while in the stadium.

What was also interesting to Payne was the number of devices connected using the Wi-Fi 6 standard, which currently is only supported by a small number of phones. Payne noted that the first week OU had the Wi-Fi 6 working in the stadium was the same week Apple started delivery of its new iPhone 11 line, which includes support for the new Wi-Fi 6 standard. After seeing 941 devices connect on Wi-Fi 6 at the Texas Tech game, Payne said Oklahoma saw a steady increase of Wi-Fi 6 devices at each following home game, with 1,471 at the West Virginia game and 2,170 at the Iowa State game.

Is AX coming ‘sooner’… rather than later?

Though most consumer handsets being used today do not support the Wi-Fi 6 standards, Apple’s decision to include Wi-Fi 6 support in its latest iPhone 11 line as well as Wi-Fi 6 support from other new Android phone models suggests that device support for the standard may be coming sooner, rather than later, to the fans in the stands. When that happens and the Wi-Fi 6 network starts utilizing its new capabilities, Oklahoma’s network will be among the first to make use of the new standard’s ability to support more clients at higher connection speeds, critical features for big networks in small places like football stadiums.

The non-insignificant number of AX devices already seen by the stadium network, Payne said, felt like good justification of the school’s decision to commit to Wi-Fi 6. What was also interesting to Payne was some later analysis of the network which showed Wi-Fi 6 clients using nearly 10 times the data per client as older Wi-Fi 5 devices.

Looking ahead to next season, Payne said he will be working with school network officials to see how to more closely tie the stadium network with the overall campus wireless infrastructure, and to see how the school might be able to incorporate a stadium app or web-based sites to increase the ability of the network to improve the fan experience. Currently Oklahoma uses a portal from AmpThink to get email addresses from network guests, which Payne said will be used by marketing and ticketing departments to try to increase engagement.

The good news is, Payne said, is that “we are no longer looking at what it costs to put a network in place” to drive any new digital experience ideas.

For Oklahoma athletics director Joe Castiglione, it was important for the school to deliver an amenity that provided a a consistent fan experience whether a fan was in a suite or in the upper deck, a goal our tests seem to have validated.

“We feel that the Oklahoma tradition is among the strongest in the nation and really want to provide a top-notch fan experience to celebrate that tradition,” Castiglione said. “Wi-Fi is just the beginning of enhancing that experience. We hope to be able to use it to engage our fans through in venue activations and experiences that would not be available without the addition of Wi-Fi.”

The scoreboard touts the new Wi-Fi network (credit this photo: University of Oklahoma)

A panaoramic view of the stadium


Wi-Fi enclosure above a concessions stand

Carolina Panthers and Beam Wireless testing CBRS at Bank of America Stadium

Beam Wireless engineers testing CBRS signals in the Bank of America Stadium press box. Credit all photos: Beam Wireless/Carolina Panthers

The Carolina Panthers and Beam Wireless are currently testing a live CBRS network at Bank of America Stadium, as a sort of experience-gathering exercise that the team hopes will help them roll out services and applications on the new bandwidth sometime soon.

“It’s a trial right now but we see this definitely becoming something permanent,” said James Hammond, director of IT for the Panthers, in a phone interview this week. According to Hammond and Beam, the team and the integrator have set up several live Ruckus APs in the stadium, running a small network on the Citizens Broadband Radio Service (CBRS) airwaves, a swath of spectrum in the 3.5 GHz range. This test follows some other public trials of the CBRS service that have launched following the September approval by regulators for initial commercial deployments.

Kevin Schmonsees, chief technology officer for Beam Wireless, said the Bank of America setup was testing CBRS connectivity between the Ruckus APs and some client-side devices, including USB sticks and Cradlepoint modems. The team and Beam representatives were running the CBRS network live during last Saturday’s ACC Championship Game at the stadium, mainly to see if there were any conflicts between the CBRS setup and the stadium’s existing DAS and Wi-Fi networks.

“Part of the test was to see how all three networks play together,” Schmonsees said.

According to the team and Beam, there was no interference between the different networks, with everything on CBRS performing as expected. During a workshop on emerging digital infrastructures, one expert drew a comparison to онлайн крипто казино, noting how these platforms leverage decentralized systems to maintain smooth operations despite the complexity of managing global transactions. Though Hammond admitted the Panthers still don’t have any concrete plans for what applications they might run on a CBRS network, the promise of more spectrum that doesn’t have to be shared is attractive just on its own right.

“It’s extremely useful to have [a network] the fans can’t impact,” Schmonsees noted.

Michelle Rhodes, CEO and president of the Greenville, S.C.-based Beam, said the pilot network also gives the Panthers a place to test new devices that are entering the CBRS ecosystem, like the iPhone 11 line recently introduced by Apple.

“Having the live network gives the stadium a good understanding of anything they might want to deploy,” Rhodes said.

A Ruckus CBRS-enabled AP in a concourse at Bank of America Stadium

Another Ruckus CBRS AP in the stadium

CBRS demos, 5G talk highlight venue news at Mobile World Congress

A legendary telecom building in downtown Los Angeles, the city that was the home of last week’s Mobile World Congress Americas show. Credit all photos: Paul Kapustka, MSR (click on any picture for a larger image)

Some live demonstrations of wireless devices using spectrum in the Citizens Broadband Radio Service (CBRS) topped the venue-specific news at last week’s Mobile World Congress Americas trade show in Los Angeles.

At Angel Stadium in nearby Anaheim, a group of companies led by Connectivity Wireless and JMA teamed up to do some live demonstrations of use cases for the CBRS spectrum, a swath of 150 MHz in the 3.5 GHz range that uses the cellular LTE standard for device communications. One demo we heard about reportedly used a Motorola push-to-talk (PTT) handset to carry on a conversation from a suite behind home plate to centerfield, a “home run” distance of at least 400 feet.

Mobile Sports Report, which doesn’t often attend trade shows, found lots for venue technology professionals to be interested in at the show, including the live demonstrations of CBRS-connected devices in the JMA booth that included handsets, headsets and standalone digital displays using CBRS for back-end connectivity. MSR also sat down with Heidi Hemmer, Verizon’s vice president of technology, to talk about 5G for stadiums and why the push for the new cellular standard doesn’t mean the end of Wi-Fi. Read on for highlights of our visit to LA, which also included an interview with Boingo’s new CEO Mike Finley and with Paul Challoner, a CBRS expert at Ericsson.

Look at me, I can hear… centerfield

MSR wasn’t able to make it to the press event held at Angel Stadium, but we heard from multiple sources that the trial CBRS network installed there for a short stint in October by Connectivity Wireless and JMA performed as advertised, especially with the aforementioned full-field PTT talk between two devices, with one of those more than 400 feet away from the CBRS radio.

The worth of the ability for a device to communicate to a access-point radio at such a distance should be clearly apparent to venue wireless professionals, who may want to tap into CBRS networks to increase connectivity inside their venues. With more powerful radios than Wi-Fi and connectivity that utilizes the mobility and security of the LTE standard, teams and venues may look to CBRS for back-of-house communications that would benefit from being separated from the shared Wi-Fi infrastructures. While we are still waiting for the first publicly announced contract win for CBRS in venues — even the Angels are still weighing the decision to go forward with a CBRS deal — being able to show networks working live is a big step forward in the “is it real” phase.

Connecting digital displays, and more PTT

If there was a true “hot spot” for CBRS activity on the MWC show floor, it was at the JMA booth, where the wireless infrastructure company was running a live CBRS network with all kinds of devices running off it. JMA, which was showing its own CBRS radio cell (a kind of access point-on-steroids radio that will provide connectivity to client devices in a CBRS network) as well as a version of its XRAN virtual network core software, had a working prototype of one of the first commercially announced CBRS networks, a wireless deployment of digital displays for the parking lots at the American Dream shopping mall in New Jersey.

A prototype of the CBRS-connected displays JMA is installing at the American Dream mall. (Don’t miss the Jimmy Hoffa joke at the bottom)

According to JMA director of markets and solutions Kurt Jacobs, the 600-acre parking lot at the huge new mall near the Meadowlands (it will have an amusement park and an indoor skiing slope, among other attractions and stores) was a perfect place to harness the ability of CBRS networks. The displays, large LED signs that can change dynamically to assist with parking instructions and directions, needed wireless connectivity to provide the back-end information.

But after considering a traditional deployment with fiber backhaul and Wi-Fi — which Jacobs said would have cost the mall at least $3 million to deploy with construction taking 6 months or more — the mall turned to JMA and a CBRS network deployment, which Jacobs said will use nine radios and 13 antennas to cover the signs, which will be spread out at key traffic junctions. Total cost? About a half-million dollars. Total deployment time? About eight weeks, according to Jacobs. Jacobs said the system will also eventually be able to support mobile CBRS radios inside security vehicles for real time updates from the lots.

Verizon to cover all NFL stadiums with 5G… and lots of Wi-Fi

Heidi Hemmer, Verizon

Heidi Hemmer, Verizon

MSR was fortunate enough to get on the appointment schedule of Heidi Hemmer, Verizon’s vice president of technology. A few days after Verizon had publicly announced a spate of 5G deployments in NBA arenas, Hemmer doubled down on the carrier’s 5G commitment to NFL stadiums, saying the current list of 13 stadiums with some kind of Verizon 5G coverage would soon expand to the entire league.

While hype is heavy around 5G — if you’re a football fan you’ve no doubt seen the Verizon TV commercial where Verizon’s technology development director Eric Nagy walks around various stadiums touting the service — Hemmer was clear that 5G is just part of a full-spectrum stadium wireless solution, one that will likely include 4G LTE as well as Wi-Fi well into the future.

While Verizon is clearly proud of its cutting-edge 5G deployments, the company is also probably the biggest provider of Wi-Fi networks in large stadiums, with many NFL and even some large colleges having Verizon-specific SSIDs for Verizon customers, usually as part of a sponsorship deal from Verizon. Verizon is also a big bankroller of distributed antenna system (DAS) deployments inside stadiums, sometimes acting as the neutral host and other times participating as a tenant on the in-venue cellular networks.

A fuzzy shot of a 5G antenna in the wild at Empower Field at Mile High in Denver

According to Hemmer, having as much connectivity as possible allows Verizon to provide the best possible experience for its customers. The eventual end goal, she said, would be a world where fans’ phones “dynamically” connect to whatever network is best suited for their needs, from Wi-Fi to 4G to 5G. Currently, many of the Verizon Wi-Fi deployments will automatically connect Verizon customers to Wi-Fi in a venue where they have previously logged on to the network.

And while the millimeter-wave 5G deployments inside stadiums right now don’t come close to covering the full space of any venue (at the Denver Broncos’ Empower Field at Mile High, for instance, there are only 16 5G antennas in the building), they do provide a different level of connectivity, with much faster download speeds and less latency. Hemmer said those characteristics could spawn an entirely new class of services for fans like better instant-replay video or advanced statistics. While MSR hasn’t personally tested any 5G networks, the early word is that in some situations download speeds can be in the gigabit-per-second range.

“Speeds are important to our customers and 5G can really push up the fan experience,” Hemmer said.

New Boingo CEO bullish on venues business

Mobile World Congress was also MSR’s first chance to meet Mike Finley, who became Boingo’s CEO back in February. A former Qualcomm executive, Finley said that Boingo’s history of being a neutral-host provider for venues should continue to drive more business in that realm, especially as newer complex possibilities like CBRS and Wi-Fi 6 networks emerge.

“We are satisfying a need” that venues have for connectivity expertise, Finley said, especially when it comes to relationships with wireless carriers.

At MWC, Boingo was part of the CBRS Alliance’s multi-partner booth space promoting the OnGo brand for CBRS gear and services. In its space Boingo was showing its new converged virtualized core offering (which was using JMA’s XRAN product) with a live combined CBRS and Wi-Fi 6 network running side by side. A booth representative with an iPhone 11 device was able to quickly switch between the two networks, offering a glimpse at the potential future networking choices venues may be able to offer.

Ericsson Dots target stadiums, CBRS

In its large MWC booth, connectivity gear provider Ericsson had a special display for venue equipment, including a weather-hardened version of its Radio Dot System that Ericsson booth reps said should be appearing soon in some U.S. sporting venues. Ericsson was also showing some Dots that it said would support CBRS, a service Ericsson sees great promise for in venues.

Paul Challoner, Ericsson’s vice president for network product solutions, said it will be interesting to see whether or not venues will need to pursue licenses for CBRS spectrum when those are auctioned off next year, or whether venues will choose to use the unlicensed parts of the CBRS spectrum. Like others at the show, Challoner was excited about Apple’s decision to include support for CBRS bands in the iPhone 11 line — “it’s a fantastic boost for the CBRS ecosystem,” he said.

More MWC photos below!

Some of the Ericsson Dot radios designed for inside venue use

A prototype digital display kiosk from JMA, Intel and LG MRI, with space up top for CBRS gear

Another wireless-enabled display kiosk, this one in the Ericsson booth. Looks like wireless and digital displays are the next hot product.

New Report: State of the art Wi-Fi network at Braves’ new SunTrust Park

MOBILE SPORTS REPORT is pleased to announce the Summer 2017 issue of our STADIUM TECH REPORT series, the ONLY in-depth publication created specifically for the stadium technology professional and the stadium technology marketplace.

In addition to our historical in-depth profiles of successful stadium technology deployments, our second issue for 2017 has additional news and analysis, including a look at how the business model for DAS deployments is changing. Download your FREE copy today!

Inside the report our editorial coverage also includes:
— SunTrust Park first look: A review of sizzling network performance at the new home of the Atlanta Braves;
— Coors Field profile: A look at how the Wi-Fi network at “old” Coors Field is still serving fans with solid performance;
— Westfield Century City Mall profile: A close look at a new Wi-Fi network and other digital services emerging at an extensive renovation of this historic Los Angeles shopping center;
— Additional profiles of a new DAS deployment at Sonoma Raceway and new Wi-Fi for Red Bull Arena!

Download your free copy today!

Let the NFL streaming battles begin: AT&T brings live streaming to basic Sunday Ticket plan

Screen shot of DirecTV Sunday Ticket app for iPad

Screen shot of DirecTV Sunday Ticket app for iPad

If you are a regular MSR reader you may remember that when the AT&T/DirecTV acquisition came to pass, we wondered how long it would take before AT&T and Verizon started battling each other in the quest to bring live NFL action to fans on their phones. The answer: wait no more, the battle’s here.

Today, AT&T announced that all subscribers to the DirecTV Sunday Ticket plan “will be able to stream Sunday afternoon out-of-market football games to almost any device” when action kicks off this fall. Previously, Sunday Ticket subscribers had to shell out about an extra hundred bucks to get the Sunday Ticket Max package, which offered streaming. Last year, the basic Sunday Ticket package was about $250; so far we can’t find a price for this season (and we don’t want to hunt through all the splash screens trying to get us to sign up for DirecTV services). Suffice to say it will still be a premium product, but one that many NFL fans can’t live without.

According to AT&T, live streaming via the Sunday Ticket plan was up 35 percent last year, a figure that doesn’t surprise us at all. We’ve been tracking Verizon Wireless and its NFL Mobile package of live-streamed games (which varies but usually includes Monday, Thursday and any weekend games, as well as Sunday out-of-market games) for some time now, and posts about NFL Mobile typically draw the highest traffic to our site. Verizon has never released subscriber numbers for NFL Mobile, but if you guessed it was among the most popular sports apps out there, you would probably be right. Even at $1 billion for four years, the rights fees seem a bargain for Verizon.

DirecTV pays the NFL more (about $1.5 billion a year, according to reports) but it gets more; NFL Mobile is exclusive to cell phone devices, meaning you can’t use it on tablets or PCs. And now thrown into the mobile mix is Twitter, whose reported $10 million deal with the NFL for Thursday-night games also includes the rights to stream to cell phones and any other device. Anyone else out there want to play?

Why is NFL action so popular on mobile devices? Mainly, I think, because of several factors, including fantasy betting and the fact that the screens have gotten so big and sharp, you can actually watch a game on a phone and it’s not painful. As many of us mobile-NFL freaks know, the best part of the deals isn’t necessarily the games themselves, but instead it’s access to the NFL’s RedZone channel, which keeps you up to date on action all across the league (and despite its name, it offers way more than just plays “in the red zone.” They try to keep live action going at all times, and NO COMMMERCIALS makes it a football junkie’s dream).

Plus, on the West coast, RedZone will often just show all of later games since there are fewer contests to jump in between. I don’t know how many people will sit every Sunday through several games on the couch, but if you can watch a few minutes or a final drive while you’re somewhere else it’s pretty addictive.

No news yet this year from Verizon on what the NFL Mobile package of games might look like, but stay tuned: This battle is just getting started. Good news is, more competition means more access and lower prices for fans. That’s something we can all cheer, no matter which teams we root for.

March Madness viewing: More digital options, plus some virtual reality

MML_iPhone_01-WatchRemember when college basketball tournament season only had a small slice of games available online? Or when you had to pay extra to watch online? It wasn’t that long ago. Thankfully though the future is here now and for 2016 the college hoops postseason has even more ways to watch games mobile or online, including one option to watch games via virtual reality programming.

Like last year, if you have a qualifying cable contract, you are basically covered and should be able to watch all the NCAA Men’s Basketball Tournament games live, on whichever platform you want. The best way to start is to head to the NCAA’s March Madness home page, where you should be able to find any and all information on devices, apps and other avenues to streaming coverage. According to Turner Sports, the NCAA and CBS Sports the games will be available live on 12 different platforms, including Amazon Fire TV, Apple TV, Roku players and Roku TV models. The new March Madness Live app isn’t avalable until Thursday, so check back soon for the go-to app for everything March Madness.

Also like last year, you should be able to watch a few minutes of the first game you see without having to log in — great if you are just trying to catch a buzzer beater. The games of course will be available on regular TV, and the March Madness home page has what may be a great time saver, a widget that helps you find those obscure cable channels other than CBS or TNT where the games might be on. Since we’ve just moved, MSR’s NCAA viewing team might make good use of the Zip Code-powered channel finder.

Screen Shot 2016-03-08 at 12.14.34 PMEven if you don’t have a cable contract you can still watch a lot of games that are streamed online; games broadcast on CBS will be available for no charge on desktop, mobile and tablet platforms, while games broadcast on the other channels (TNT, TBS, truTV and local channels) should be available on those providers’ websites. Again, if you get stuck or lost just defaulting back to the March Madness home page should give you a path to whatever game it is you’re looking for.

Big East tourney available in VR

If you have a NextVR platform you will be able to watch the 2016 Big East tournament (it starts Thursday, March 10) thanks to a partnership between FOX Sports and NextVR. We’re not VR-savvy here at MSR headquarters yet but with seven games and 15 hours of programming scheduled this might be a cool treat for VR fans. NextVR has an instruction page on how to watch the games in VR; if anyone tries this out, send us an email with a report on how it worked (or didn’t) and we’ll let everyone else know.

Also, don’t forget — this year for the first time the NCAA Men’s Championship game, scheduled for Monday, April 4, will be on TBS, NOT on CBS, the first time the champs game has been only on cable. And, there will be streaming options as well during Final Four weekend, according to the official announcement:

For the NCAA Final Four National Semifinals on Saturday, April 2, from Houston, NCAA March Madness Live will provide three distinct live video streams of both games to provide unprecedented viewing options for fans – live streaming of the traditional game coverage provided on TBS, along with “Team Stream by Bleacher Report” coverage or team-specific presentations offered via TNT and truTV. This year’s NCAA Tournament will include the National Championship airing on TBS, the first time the championship has ever been televised on cable television.